相关文章

RISC-V SiFive U64内核——HPM硬件性能监视器

学习、沉淀、分享,才能有所获~ 文章目录 HPM简介性能监控计数器重置行为固定功能性能监控计数器事件可编程性能监控计数器事件选择器寄存器事件选择器编码计数使能寄存器 对于性能分析,通常我们会使用Perf工具。而perf中的硬件事件,则需要硬件…

机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE

💖作者简介:大家好,我是车神哥,府学路18号的车神🥇 ⚡About—>车神:从寝室到实验室最快3分钟,最慢3分半(那半分钟其实是等红绿灯) 📝个人主页:…

MAE 代码实战详解

MAE 代码实战详解 if__name__"__main__"model.forwardmodel.forward.encordermodel.forward.decordermodel.forward.loss大小排序索引-有点神奇torch.gather if__name__“main” MAE 模型选择 def mae_vit_base_patch16_dec512d8b(**kwargs):model MaskedAutoenco…

基础论文学习(5)——MAE

MAE:Masked Autoencoders Are Scalable Vision Learners Self-Supervised Learning step1:先用无标签数据集,把参数从一张白纸训练到初步预训练模型,可以得到数据的 Visual Representationstep2:再从初步成型&#x…

何凯明新作MAE 学习笔记

【MAE与之前AI和CV领域最新工作的关系】 学习MAE视频【李沐】 He, K., Chen, X., Xie, S., Li, Y., Dollr, P., & Girshick, R. (2021). Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377. 【Transformer】 Transforme纯注意力&…

5、MAE:探索视觉预训练模型

目录 1、论文 2、背景与动机 3、回答的问题 4、创新与卖点 5、实现细节 模型框架 具体步骤 简单代码示例 6、一些资料 1、论文 Masked Autoencoders Are Scalable Vision Learnershttps://arxiv.org/pdf/2111.06377.pdf 2、背景与动机 在深度学习和计算机视觉的领域中…

当CV遇上transformer(二)MAE模型及源码分析

当CV遇上transformer(二)MAE模型 2020年10月,Dosovitskiy首次将纯Transformer的网络结构应用于图像分类任务中(ViT),并取得了当时最优的分类效果,其研究成果是Transformer完全替代标准卷积的首次尝试。 大神何恺明在2021年11月基于(ViT)架构…

MAE-DET学习笔记

MAE-DET学习笔记 MAE-DET: Revisiting Maximum Entropy Principle in Zero-Shot NAS for Efficient Object Detection Abstract 在对象检测中,检测主干消耗了整个推理成本的一半以上。最近的研究试图通过借助神经架构搜索(NAS)优化主干架构…

MAE论文解读

文章目录 创新点算法原理MaskingMAE encoderMAE decoder重构目标 实验Baseline: ViT-Large.消融实验Mask token自监督方法比较迁移至目标检测任务及语义分割任务 结论 论文: 《Masked Autoencoders Are Scalable Vision Learners》 代码: https://github.com/facebookresearc…

MSE与MAE

均方误差 均方误差(MSE)是最常用的回归损失函数,计算方法是求预测值与真实值之间距离的平方和,公式如图。 下图是MSE函数的图像,其中目标值是100,预测值的范围从-10000到10000,Y轴代表的MSE取值范围是从0到正无穷,并且在预测值为100处达到最小。 MSE损失(Y轴)-预测值(…

论文阅读|MAE

Masked Autoencoders Are Scalable Vision Learners 参考资料 Self-Supervised Learning 超详细解读 (六):MAE:通向 CV 大模型 - 知乎 (zhihu.com) Self-Supervised Learning 超详细解读 (目录) - 知乎 (zhihu.com)、 1. 有监督(Supervise…

MAE简记

MAE简记 文章目录 MAE简记Mask 方法EncoderDecoderTarget & LOSS Mask 方法 将图片分割成不重复的正方形patch,遮挡其中一部分patch(75%) Encoder 采用ViT,但是只对可见的没有被masked的patch使用 Decoder 以encoder的输出masked的patch作为输入…

MAE论文笔记

MAE论文笔记 Masked Autoencoders Are Scalable Vision Learners MAE模型和其他的结构的关系,可以认为是在ViT的基础上实现类似于BERT的通过完型填空获取图片的理解 标题和作者 Masked Autoencoders Are Scalable Vision Learners 其中的Autoencoders 中的auto是…

【论文精读】MAE

摘要 将掩码重建任务从nlp引入到cv,提出非对称掩码自编码器。 框架 概述 如上图,本文提出掩码自编码器,即将给定原始信号的部分观测值的情况下重建原始信号,编码器将观察到的部分信号(没有掩码标记)映射到潜在表示,采…

论文精读--MAE

BERT在Transformer的架构上进行了掩码操作,取得了很好的效果。如果对ViT进行掩码操作呢? 分成patch后灰色表示遮盖住,再将可见的patch输入encoder,把encoder得到的特征拉长放回原本在图片中的位置,最后由decoder去重构…

MAE详解

目录 一、介绍 二、网络结构 1. encoder 2. decoder 3. LOSS 三、实验 全文参考:论文阅读笔记:Masked Autoencoders Are Scalable Vision Learners_塔_Tass的博客-CSDN博客 masked autoencoders(MAE)是hekaiming大佬又一新作,其做法很简单,就是随机mask掉一部分patc…

MAE

背景 作者开门见山说明了深度学习结构拥有越来越大的学习容量和性能的发展趋势,在一百万的图像数据上都很容易过拟合,所以常常需要获取几百万的标签数据用于训练,而这些数据公众通常是难以获取的。MAE的灵感来源是DAE(denosing autoencoder)…

【论文阅读】MAE模型介绍

目录 介绍 模型 ​编辑 实验过程 结论 介绍 Masked Autoencoders Are Scalable Vision Learners Facebook Al的kaiming大神等人于2021年十一月提出了一种带自编码器(MAE),它基于(ViT)架构。他们的方法在imageNet上的表现要好于从零开始训练的VIT。 灵感来源&…

机器学习——需求预测——准确性(误差)统计——MAE、MSE、MAPE、WMAPE

误差指标公式(为预测值,为真实值)特点缺点MAE 1、直观1、不同商品真实值量纲上的差别带来的MAE结果波动大MSE1、加倍惩罚极端误差 1、不同商品真实值量纲上的差别带来的MSE结果波动大 2、极端值的影响 3、不够直观(平方之后含义不…

【科研】常用的实验结果评价指标(2) —— MAE 是什么? !

了解MAE 提示:先说概念,后续再陆续上代码 文章目录 了解MAE前言一、MAE 基本概念1. MAE 是什么?2. MAE 的起源3. MAE 的计算公式 二、MAE的适用场景是什么?三、MAE 的劣势,或 不适用于那些场景或者数据?四、…